3.352 \(\int \sqrt {4+3 x^2+x^4} \, dx\)

Optimal. Leaf size=169 \[ \frac {\sqrt {x^4+3 x^2+4} x}{x^2+2}+\frac {1}{3} \sqrt {x^4+3 x^2+4} x+\frac {7 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{3 \sqrt {2} \sqrt {x^4+3 x^2+4}}-\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {x^4+3 x^2+4}} \]

[Out]

1/3*x*(x^4+3*x^2+4)^(1/2)+x*(x^4+3*x^2+4)^(1/2)/(x^2+2)+7/6*(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos
(2*arctan(1/2*x*2^(1/2)))*EllipticF(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)*
2^(1/2)/(x^4+3*x^2+4)^(1/2)-(x^2+2)*(cos(2*arctan(1/2*x*2^(1/2)))^2)^(1/2)/cos(2*arctan(1/2*x*2^(1/2)))*Ellipt
icE(sin(2*arctan(1/2*x*2^(1/2))),1/4*2^(1/2))*2^(1/2)*((x^4+3*x^2+4)/(x^2+2)^2)^(1/2)/(x^4+3*x^2+4)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1091, 1197, 1103, 1195} \[ \frac {\sqrt {x^4+3 x^2+4} x}{x^2+2}+\frac {1}{3} \sqrt {x^4+3 x^2+4} x+\frac {7 \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{3 \sqrt {2} \sqrt {x^4+3 x^2+4}}-\frac {\sqrt {2} \left (x^2+2\right ) \sqrt {\frac {x^4+3 x^2+4}{\left (x^2+2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[4 + 3*x^2 + x^4],x]

[Out]

(x*Sqrt[4 + 3*x^2 + x^4])/3 + (x*Sqrt[4 + 3*x^2 + x^4])/(2 + x^2) - (Sqrt[2]*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/
(2 + x^2)^2]*EllipticE[2*ArcTan[x/Sqrt[2]], 1/8])/Sqrt[4 + 3*x^2 + x^4] + (7*(2 + x^2)*Sqrt[(4 + 3*x^2 + x^4)/
(2 + x^2)^2]*EllipticF[2*ArcTan[x/Sqrt[2]], 1/8])/(3*Sqrt[2]*Sqrt[4 + 3*x^2 + x^4])

Rule 1091

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(a + b*x^2 + c*x^4)^p)/(4*p + 1), x] + Dis
t[(2*p)/(4*p + 1), Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4
*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]

Rule 1103

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(2*q*Sqrt[a + b*x^2 + c
*x^4]), x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1195

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[
(d*x*Sqrt[a + b*x^2 + c*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q
^2*x^2)^2)]*EllipticE[2*ArcTan[q*x], 1/2 - (b*q^2)/(4*c)])/(q*Sqrt[a + b*x^2 + c*x^4]), x] /; EqQ[e + d*q^2, 0
]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1197

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(
e + d*q)/q, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps

\begin {align*} \int \sqrt {4+3 x^2+x^4} \, dx &=\frac {1}{3} x \sqrt {4+3 x^2+x^4}+\frac {1}{3} \int \frac {8+3 x^2}{\sqrt {4+3 x^2+x^4}} \, dx\\ &=\frac {1}{3} x \sqrt {4+3 x^2+x^4}-2 \int \frac {1-\frac {x^2}{2}}{\sqrt {4+3 x^2+x^4}} \, dx+\frac {14}{3} \int \frac {1}{\sqrt {4+3 x^2+x^4}} \, dx\\ &=\frac {1}{3} x \sqrt {4+3 x^2+x^4}+\frac {x \sqrt {4+3 x^2+x^4}}{2+x^2}-\frac {\sqrt {2} \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{\sqrt {4+3 x^2+x^4}}+\frac {7 \left (2+x^2\right ) \sqrt {\frac {4+3 x^2+x^4}{\left (2+x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {x}{\sqrt {2}}\right )|\frac {1}{8}\right )}{3 \sqrt {2} \sqrt {4+3 x^2+x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.35, size = 331, normalized size = 1.96 \[ \frac {\sqrt {2} \left (3 \sqrt {7}-7 i\right ) \sqrt {\frac {-2 i x^2+\sqrt {7}-3 i}{\sqrt {7}-3 i}} \sqrt {\frac {2 i x^2+\sqrt {7}+3 i}{\sqrt {7}+3 i}} F\left (i \sinh ^{-1}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )-3 \sqrt {2} \left (\sqrt {7}+3 i\right ) \sqrt {\frac {-2 i x^2+\sqrt {7}-3 i}{\sqrt {7}-3 i}} \sqrt {\frac {2 i x^2+\sqrt {7}+3 i}{\sqrt {7}+3 i}} E\left (i \sinh ^{-1}\left (\sqrt {-\frac {2 i}{-3 i+\sqrt {7}}} x\right )|\frac {3 i-\sqrt {7}}{3 i+\sqrt {7}}\right )+4 \sqrt {-\frac {i}{\sqrt {7}-3 i}} x \left (x^4+3 x^2+4\right )}{12 \sqrt {-\frac {i}{\sqrt {7}-3 i}} \sqrt {x^4+3 x^2+4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[4 + 3*x^2 + x^4],x]

[Out]

(4*Sqrt[(-I)/(-3*I + Sqrt[7])]*x*(4 + 3*x^2 + x^4) - 3*Sqrt[2]*(3*I + Sqrt[7])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^
2)/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*EllipticE[I*ArcSinh[Sqrt[(-2*I)/(-3*I +
 Sqrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])] + Sqrt[2]*(-7*I + 3*Sqrt[7])*Sqrt[(-3*I + Sqrt[7] - (2*I)*x^2)
/(-3*I + Sqrt[7])]*Sqrt[(3*I + Sqrt[7] + (2*I)*x^2)/(3*I + Sqrt[7])]*EllipticF[I*ArcSinh[Sqrt[(-2*I)/(-3*I + S
qrt[7])]*x], (3*I - Sqrt[7])/(3*I + Sqrt[7])])/(12*Sqrt[(-I)/(-3*I + Sqrt[7])]*Sqrt[4 + 3*x^2 + x^4])

________________________________________________________________________________________

fricas [F]  time = 0.41, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {x^{4} + 3 \, x^{2} + 4}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + 3*x^2 + 4), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{4} + 3 \, x^{2} + 4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4), x)

________________________________________________________________________________________

maple [C]  time = 0.00, size = 224, normalized size = 1.33 \[ \frac {\sqrt {x^{4}+3 x^{2}+4}\, x}{3}+\frac {32 \sqrt {-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \EllipticF \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )}{3 \sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}}-\frac {32 \sqrt {-\left (-\frac {3}{8}+\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \sqrt {-\left (-\frac {3}{8}-\frac {i \sqrt {7}}{8}\right ) x^{2}+1}\, \left (-\EllipticE \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )+\EllipticF \left (\frac {\sqrt {-6+2 i \sqrt {7}}\, x}{4}, \frac {\sqrt {2+6 i \sqrt {7}}}{4}\right )\right )}{\sqrt {-6+2 i \sqrt {7}}\, \sqrt {x^{4}+3 x^{2}+4}\, \left (i \sqrt {7}+3\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^4+3*x^2+4)^(1/2),x)

[Out]

1/3*(x^4+3*x^2+4)^(1/2)*x+32/3/(-6+2*I*7^(1/2))^(1/2)*(-(-3/8+1/8*I*7^(1/2))*x^2+1)^(1/2)*(-(-3/8-1/8*I*7^(1/2
))*x^2+1)^(1/2)/(x^4+3*x^2+4)^(1/2)*EllipticF(1/4*(-6+2*I*7^(1/2))^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2))-32/(-6+2
*I*7^(1/2))^(1/2)*(-(-3/8+1/8*I*7^(1/2))*x^2+1)^(1/2)*(-(-3/8-1/8*I*7^(1/2))*x^2+1)^(1/2)/(x^4+3*x^2+4)^(1/2)/
(I*7^(1/2)+3)*(EllipticF(1/4*(-6+2*I*7^(1/2))^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2))-EllipticE(1/4*(-6+2*I*7^(1/2)
)^(1/2)*x,1/4*(2+6*I*7^(1/2))^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{4} + 3 \, x^{2} + 4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^4+3*x^2+4)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 3*x^2 + 4), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {x^4+3\,x^2+4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2 + x^4 + 4)^(1/2),x)

[Out]

int((3*x^2 + x^4 + 4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{4} + 3 x^{2} + 4}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**4+3*x**2+4)**(1/2),x)

[Out]

Integral(sqrt(x**4 + 3*x**2 + 4), x)

________________________________________________________________________________________